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Comprehensive spectral analysis of a fluid model for trapped electron mode (TEM) turbulence
reveals that marginally stable zonal modes at infinitesimal amplitude become robustly damped at
finite amplitude. Zonal-mode structure, anisotropy, excitation, and wave number spectra are shown
to result from interaction of the zero-frequency drift wave with the density advection nonlinearity.
Heuristic dimensional balances, closure theory, and simulations manifest the primacy of the
interaction, and yield energy transfer rates, fluctuation levels, spectra and finite-amplitude-induced
dissipation. Strong sensitivity to the zero-frequency wave induces a marked spectral energy-transfer
anisotropy that preferentially drives zonal modes relative to nonzonal modes. Zonal-mode excitation
is accompanied by the nonlinear excitation of a spectrum of damped eigenmodes. The mixing of
unstable TEM eigenmodes with the damped spectrum subjects zonal modes to
finite-amplitude-induced damping. The combination of anisotropic transfer to zonal wave numbers
and their nonlinear damping is shown to make this the dominant saturation mechanism for TEM

turbulence. © 2006 American Institute of Physics. [DOI: 10.1063/1.2167309]

I. INTRODUCTION

Recent work on nonlinear instability in a simple two-
dimensional (2D) fluid model for trapped electron mode
(TEM) turbulence’ reveals that in addition to nonlinear in-
stability there is also nonlinear damping in certain wave
number ranges. Nonlinear damping is a dissipation of fluc-
tuation energy with an amplitude-dependent rate. In TEM,
unstable fluctuations at infinitesimal amplitude become en-
ergy sinks at finite amplitude. These fluctuations receive en-
ergy from conservative spectral transfer and dissipate it via
nonlinear damping, shedding all vestiges of the linear insta-
bility. One spectrum subrange with such behavior is at low
wave number extending to k,=0. Fourier modes with k,=0
are zonal modes in 2D. Zonal-mode wave numbers are mar-
ginally stable (undamped) at infinitesimal amplitude, but ro-
bustly damped at finite amplitude.2 These results were found
in a weakly collisional regime (collision rate <<diamagnetic
frequency) that has historically been labeled as collisionless.

Nonlinear damping of zonal modes radically changes
their dynamics and the turbulence that drives them. This ar-
ticle describes those changes. The changes are twofold. First,
for TEM turbulence nonlinear damping of zonal modes satu-
rates zonal-mode excitation, i.e., spectral energy transfer into
zonal modes is balanced by nonlinear damping, allowing a
steady state. Second, the spectral transfer to nonlinearly
damped zonal modes is the dominant saturation channel for
TEM instability-driven turbulence. It is dominant not just
because the nonlinear damping rate is significant—slightly
larger than the growth rate—or because nonlinearly damped
zonal modes can be in close proximity to unstable modes in
wave number space. It is dominant primarily because spec-
tral transfer is highly anisotropic, with the energy transfer
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rate to zonal modes significantly larger than the transfer rate
to nonzonal modes. Consequently, if coupling to zonal
modes is removed, the turbulence must avail itself of less
efficient saturation channels, and the turbulence level rises
markedly in order to balance the drive.

The importance of zonal flows in tokamak microturbu-
lence was recognized from simulation results showing turbu-
lence levels rising by an order of magnitude when zonal
flows are artificially removed.> Zonal flows are thus be-
lieved to limit anomalous transport in tokamaks. Zonal flows
are part of the fluctuation spectrum and couple to other fluc-
tuations via three-wave coupling.6 This has provided one av-
enue for inferring the presence of zonal modes in
expe1riment7’8 by means of the bicoherence or bispectrum,
which quantifies the energy transfer rate between Fourier
modes. Direct measurement of advecting flow has also iden-
tified a flow whose mean poloidal wave number is zero and
bounded below m:3,9 and is part of the fluctuation spectrum
near the frequency of the geodesic acoustic mode."°

Both the behavior and properties of zonal modes and the
anisotropy of TEM turbulence arise from the interaction of
waves and nonlinear advection. In TEM and other weakly
collisional or collisionless systems, wave frequencies exceed
instability growth rates. Saturation forces a balance between
growth rate and nonlinearity, hence wave frequencies also
exceed nonlinear decorrelation rates. This establishes a clas-
sic wave-dominated regime, like that of quasigeostrophic
B-plane turbulence for scales larger than the Rhines radius."!
In such regimes, fluctuation levels, spectrum shapes, and
spectral transfer rates are subject to a balance, enforced at the
zonal wave number, between wave frequency and nonlinear-
ity. For this reason geophysical zonal flows reflect the aniso-
tropy of the Rossby wave. Analysis of such regimes requires
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proper treatment of wave frequencies. When there are mul-
tiple fields, time derivatives are combinations of multiple
eigenfrequencies, and it is not proper to represent them by
any single frequency (e.g., the frequency of the unstable
mode). The simplest way to deal with this problem is to
decompose the fields into their linear eigenmode constitu-
ents, recasting the model as nonlinear evolution equations for
the eigenmode amplitudes.] This procedure is known as the
helical decomposition in rotating fluids where the eigen-
modes are helicity waves.'>"? Here we apply a more generic
label and refer to it as the eigenmode decomposition.

Two features are salient in the eigenmode decomposi-
tion. First, spectral energy transfer is anisotropic, with zonal
modes receiving a disproportionate share. The enhancement
occurs because k,=0 minimizes the difference of the linear
eigenmode frequencies, which appears in the denominator of
the mode coupling strength in the eigenmode decomposition.
For zonal modes, the frequency difference vanishes to lowest
order in the small parameter v/ws (collision frequency/
diamagnetic frequency), yielding the enhancement. Second,
the coupling strength in the density advection nonlinearity is
order (v/ w-) for the interaction of two Fourier modes on the
unstable eigenmode branch, whereas it is order (w«/v) for
the interaction of the same two Fourier modes with one on
the unstable eigenmode branch and one on the second eigen-
mode branch. The latter is damped for all wave numbers, is
usually ignored in analyses because it is assumed to decay to
zero, and does not even have a recognized label in the litera-
ture. However, simple parametric instability analysis shows
that it is always excited in the linear growth phase. This
eigenmode need only reach an amplitude two orders smaller
than the amplitude of the unstable eigenmode for it to make
order unity changes in the saturation dynamics. In fact, its
amplitude is only one order smaller, and it dominates satu-
ration. The excitation of this eigenmode, which we refer to
simply as the damped eigenmode, means that there is a non-
linear eigenmode, given as an amplitude-dependent projec-
tion on the two linear eigenmodes of the basis set. It is
shown here that any modification of the eigenmode of the
linear instability produces damping of energy at the zonal
wave number k,=0.

The relationship of zonal modes to wave physics in TEM
puts it into a broad empirical similarity group characterized
by anisotropic spectral condensation. Members of this group
include Hasegawa-Mima turbulence,14 TEM turbulence,
quasigeostrophic B-plane turbulence, three-dimensional (3D)
rotating turbulence,"” and rotating stratified turbulence.'® In
each of these systems large-scale structure possessing the
anisotropy of the zero-frequency linear wave is driven by
isotropic nonlinearities in a wave-dominated regime. For
Hasegawa-Mima, TEM, and quasigeostrophic S-plane turbu-
lence, the global-scale structures are zonal flows and zonal
density fields. For 3D rotating turbulence the structures are
vortical columns. Introducing stratification allows the addi-
tion of layered zonal flow-like structures. Stable drift-wave
and B-plane turbulence have nonlinearities that transfer en-
ergy to the global scales of zonal flows. In contrast, absent
wave anisotropy, the nonlinearities of TEM and rotating and
stratified turbulence drive energy to small scales away from
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zonal flows. In these systems, near-resonant three wave in-
teractions induce inverse transfer to large scales. This pro-
cess, which violates the axiom that dynamical invariants
govern cascade direction, has recently been described ana-
Iytically and shown to satisfy a near-resonant wave-
interaction condition.'’

Nonlinear damping and the anisotropic wave-turbulence
interaction are analyzed spectrally using strong turbulence
statistical closure theory, dimensional analysis and numerical
computation. We apply the closure to the eigenmode decom-
position to obtain the energies of the unstable and damped
eigenmodes, and the nonzero energy of the complex cross
correlation of the two nonorthogonal eigenmodes. This task
is accomplished analytically using weak collisionality as an
expansion parameter, leading to expressions for the rms satu-
ration values of the nonlinear eigenmode for both the turbu-
lence and the zonal modes. From the dominant saturation
balance it is clear that when the weak collisionality of the
trapped electron scattering exceeds viscosity and small-scale
collisional density diffusion, the turbulence saturates by en-
ergy transfer to the damped eigenmode, with the most sig-
nificant channel being to the zonal modes. Kolmogorov-like
energy transfer by forward cascading within the unstable
eigenmode is subdominant, and has no effect on the satura-
tion levels to lowest order. Dimensional analysis of the bal-
ance of wave frequency and nonlinearity at the zonal wave
number in the eigenmode decomposition yields spectral den-
sities for each of the eigenmode amplitudes.

This article is organized as follows. In Sec. II zonal
mode excitation is described from the equations for the
eigenmode decomposition and numerical computation. In
Sec. III a comprehensive spectral picture of the saturated
state of zonal modes and TEM turbulence is presented. Sec-
tion IV deals with the nonlinear damping of zonal modes.
Conclusions are given in Sec. V.

Il. ZONAL MODE EXCITATION

TEM turbulence can be described by a simple fluid
model, consisting of electron density and (ion) vorticity evo-
lution equations that have been linked by quasineutrality.
The model is

on dp

E—V¢Xz~Vn+v(n—¢)=—Eng, (1)

%(1 V) (- )+ VX z- VV2

=—vp[1 - €"a]

9
P 2)
where n=€"?n,+ ¢ is an effective density, n, is the density of
trapped electrons, ¢ is the potential, €'/? is the trapping frac-
tion, v is the detrapping rate, v is the diamagnetic drift
velocity, @=1+37,/2, and 7, is the ratio of gradient scale
lengths for the density and temperature. A derivation of this
model and the dimensionless normalizations for n, ¢, t, x,
and y are given in Ref. 1. The quantity n will be referred to
as the electron density, but it depends on the potential. Ap-
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plying the spatial Fourier transform to Egs. (1) and (2),
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where b, (k) is advection of turbulent electron density and
by(k) is advection of vorticity. Density advection has two
spatial derivatives, vorticity advection has four. Conse-
quently electron density advection is the dominant nonlinear-
ity at large scales where k<(\ﬂ%)rms. Zonal flow spectra
typically peak at low k,, putting the energy containing zonal-
flow scales in the long wavelength regime. Thus while zonal
mode excitation is conventionally associated with the Rey-
nolds stress and flows, density advection and density zonal
modes must be considered to form an accurate picture of the
physics. Recent analysis of data from the Texas experimental
tokamak infers the excitation of zonal flows through bispec-
tra of coupled density and electrostatic potential
ﬂuctuations,8 consistent with density advection. Advective
nonlinearities of density or pressure have historically been
identified with energy transfer to small scales. Hence the
physics of spectral transfer to the long wavelengths of zonal
flows'” is as nontrivial as it is vital to zonal flow formation.

Because zonal modes are not linearly unstable, they
reach finite amplitude only by spectral transfer from modes
with k,# 0. The process is highly sensitive to wave aniso-
tropy. The physics can be understood heuristically. In the
weakly collisional regime the growth rate is smaller than the
wave frequency (y*v<wxk,p). At saturation the nonlin-
earities must become as large as the growth rate to achieve
stationarity, but these remain smaller than wave frequencies.
In such wave-dominated regimes, frequencies enter domi-
nant balances through their role in the turbulent decorrelation
rate. However the wave frequency vanishes for k,=0. This
leads to a singular layer in wave number space in which
spectral transfer to k,=0 becomes sufficiently large to enable
the spectrum at k,=0 to compensate for the vanishing of k,.
This was first demonstrated numerically for quasigeostrophic
B-plane turbulence.'' (There, the labeling of x and y axes is
opposite to the plasma convention, and the wave term van-
ishes for k,=0). A steep k;s spectrum develops for wave
numbers near k,=0 to keep the wave terms in balance with
the nonlinearity. The spectral density outside the band near
k,=0 is much smaller, falling off as k3. The steep spectrum
feature, which represents a geophysical zonal flow, is created
by highly anisotropic spectral transfer, favoring k,=0 zonal
modes over other nonzonal modes.

The situation is analogous to the singular layers that
arise in partial differential equations whenever the term of
the highest-order derivative can drop out of a dominant bal-
ance because of the smallness of a multiplicative coefficient.
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The term remains in the balance if the highest derivative
becomes large enough to offset the small coefficient. In par-
tial differential equations the term with the highest derivative
dictates the singularity. In spectral equations the term with
the lowest power of k dictates the singularity (i.e., the wave
term) because it dominates at long wavelengths. This term
vanishes for k,=0, hence the singularity is expressed as an
enhancement of spectral density and spectral transfer for k,
=0.

This anisotropic enhancement is readily evident in the
eigenmode decomposition. This transformation is a nonlin-
early evolving projection onto the basis set formed by the
linear eigenmodes. Under the eigenmode decomposition the
density and potential are written as

(1) ) ~ (Rl ) (Rz)

(¢k(t) = Bi(k,1) 1 + By(k,1) 1
_(Rl R2)<B1(k»l))
11\ Byk)

_ ﬁl(k,l‘)>
_M<,32(k,t) ’ ©)

where B,(k,t) and B,(k,r) are the instantaneous (nonlinearly
evolving) amplitudes of the linear eigenmodes, and [R;,1]
and [R,,1] are the eigenvectors. The components R;(k) are
the ratio n,/ ¢, for each eigenfrequency w;, and are obtained
by linearizing Eq. (4), replacing 9/ dt with —iw;, and solving
for ny. The result is

2

1 +k%- €2 ikvn(1 = ae'?) + ve
Ri(k)=~ T i — — of )

J 1+k2—€1/2 ’

(6)

where the eigenfrequencies w; are the roots of the character-
istic equation,

0 (1 + k% =€) + o[- vpk,(1 — &€"?) + iv(1 + k%]
—ikywpr=0. (7)

Evolution equations for 8;(k,) are obtained by inverting
Eq. (5), taking a time derivative, using Egs. (3) and (4) to
write 7, and ¢ in terms of their evolution operators, and
rewriting n; and ¢, in terms of B,(k) and B,(k) with Eq. (5).
The result is a pair of equations that are diagonal in the linear
coupling but mix the two nonlinearities,

(m)) <iw1 0 )(m(@)

+

Bo(k) 0 iwy/\By(k)
~ 1 ( b,—Ry(k)b,, ) @)
" R{(k) = Ry(k)\= b, + R (k)b )’

where b, and b, are understood to be evaluated using the
substitution n;=R;B,+R,5, and ¢, =B;+B,. A useful ap-
proximation to Eq. (8), one that will be the basis of analysis
in subsequent sections, is given by
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This approximation is reached by discarding the vorticity
advection nonlinearity b, and assuming that 8, <, so that
[, can be dropped relative to ;. These approximations con-
serve energy and are generally valid in the long wavelength
regime.

The strong anisotropy of spectral transfer favoring zonal
modes is readily evident in the behavior of the factor (R,
—R,)~" in Eq. (8). From Eq. (6), this factor is controlled by
the eigenfrequency difference w,(k)—w,(k):

1 ( ive? ) 1
RO-R®) T+ [ -] O

The eigenmode frequencies are the roots of Eq. (7). The first
root w; is the unstable weakly collisional trapped electron
mode. For k, # 0 it has a real frequency proportional to vpk,
and a growth rate proportional to v. For k,=0 this root has
®;=0. If the nonzonal modes are weakly collisional, v
<uvpky, the frequency for nonzonal and zonal wave numbers
is

) = vpk,(1 = &e'?) ive[a(1 +k%) —1]
=) T (- ) (1 - ae”)
+0<£) (k, #0), (11)
w;(k)=0 (k,=0). (12)

The second root w, is a stable eigenmode branch. Its fre-
quency for nonzonal and zonal wave numbers is

—iv Ve [a(l + k%) - 1]

k) = -
wz( ) (1 _ &6]/2) kva(l _ &6”2)3
P
+O(ﬁ> (k, #0), (13)
vpks .
—iv(1+12)
w,(k) = m (k,=0). (14)

In comparing w;(k)—w,(k) for k,=0 and k,#0 we observe
that the vanishing of w,(k) for ky,=0 makes this difference
O(vpk,) for k,#0 and O(v) for k,=0. Therefore, the mode-
coupling-strength factor [R;(k)—R,(k)]™" goes as

”/EI/Z

——————— fork,#0
1 kwp(l — @e’?) 4
=) e (15)
R, (k) = Ry(k) €
P for ky=0.
1+k;

The difference in coupling strengths between triplets in
which k is a zonal wave vector versus those in which it is not
carries directly over to spectral transfer rates, which derive
from second order moments of Eq. (9). The anisotropy of the
coupling factor (R;—R,)~! indicates that the rate of energy

transfer into zonal modes is larger by a factor Evv p/ v than it
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FIG. 1. Spectral distribution of energy flux, time-averaged in the saturation
phase. The largest flux values are for zonal modes.

is for transfer into nonzonal modes. The anisotropy of spec-
tral transfer is illustrated in Fig. 1, which plots the spectral
transfer rate as a function of k, and k, from numerical steady
state solutions of Egs. (1) and (2). The large peaks at the
edge of the wave number plane represent energy transferred
into zonal modes. The rate of transfer is significantly larger
than that of nonzonal modes.

The evolution equation in the eigenmode decomposition,
Eq. (8), also clearly reveals that the stable eigenmode is ex-
cited. As the system evolves from infinitesimal amplitudes
the nonlinearity grows because each of its two (; factors
exponentiates. Eventually the nonlinearity saturates the insta-
bility by balancing the linear growth term —iw,/3;, which
itself is growing. However, well before, the same nonlinear-
ity overwhelms the damping term of the [, equation,
—iw,[3,, which initially decreases exponentially. The result is
exponential growth of B3,. In Sec. IV we will show that the
excitation of the damped eigenmode directly leads to nonlin-
ear damping of zonal modes.

Zonal modes are excited in precisely the same way the
damped eigenmode is excited, but as shown above, are
driven harder by virtue of the anisotropy of the mode cou-
pling factor [R,(k)=R,(k)]"'. The initial nonlinear-growth
phase of both the damped eigenmode, and of zonal modes on
both branches, can be described analytically by noting that
the exponentially growing [3;-field dominates the nonlinear-
ity, allowing the nonlinear term that depends on 3, to be
dropped. Thus, Eq. (8) can be written

(d/dt+iwl 0 >(,81(k))
0 didt +iw, ) \ By(k)

1 <1)E(k’><z-k)

TR -Ry(k)\ - 1

X[Ry (k") = Ry(k = k") 1By (K", ) By (k = k",0), (16)

where the long wavelength regime with b,>R,b , has been
assumed. Before saturation, B;(k’,7) and B,(k—k’,t) grow
exponentially (k,—k, .k #0) yielding,

Bi(k',1) = By(k',t = 0)exp[— iw  (k')1]  (ky#0).  (17)

and a similar expression for B,(k—k’,r). Consider first non-
zonal 3, eigenmodes. The linear term of the 3, equation first
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FIG. 2. Time evolution of the total energy and the energies in the growing
and damped eigenmodes.

decays exponentially, allowing the nonlinearity to dominate
long before saturation. Once that happens, but before 3, be-
comes large enough to contribute to the nonlinearity, or for
the linear term to balance the nonlinearity, the evolution of
B, is governed by the nonlinearity of Eq. (16), with B,(k’,1)
and B,(k—k’,t) approximated as in Eq. (17). It is straightfor-
ward to integrate the nonlinearity to obtain

Bolk,1) = E M v

x 2(1 - 61/2&)2 kyUD
W&—lﬂl—émxzﬂ—kﬁ]
kyvp(k, —k;)(1 - €*&)*
X By(k',t=0)B,(k—k',t=0)

expl—iw (k')t —iw (k- k")1]
i[wz(k) - w1(k/) - w1(k - k’)] -

[id51/22k (k" -K)

(18)

This expression is valid for turbulent modes on the damped
branch until 3, is sufficiently large to contribute to nonlinear
evolution or saturate the instability. The exponential factor
contains a sum of growth rates of modes k" and k—k’, allow-
ing the damped branch to grow exponentially at a rate that
exceeds the growth rate of the unstable branch. This behavior
is evident in Fig. 2, which shows the time evolution of the
energies in the growing and damped branches. It is also evi-
dent that the damped branch begins growing exponentially
long before saturation of the instability.

The assumptions made in deriving Eq. (18) apply
equally well to zonal modes on both the unstable and
damped branches. On the damped branch, zonal modes de-
cay initially until the nonlinearity dominates. On the unstable
branch the nonlinearity dominates at all times because w;
=0 makes the linear term zero. Consequently the evolution
of B, and B, for k,=0 is similar to that of Eq. (18), except
that in deriving the evolution, the factor (R,—R,)~' must be
taken from the second line of Eq. (15) instead of the first.
The evolution of zonal modes in either eigenmode branch is
given by
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FIG. 3. Time evolution of the total energy, zonal mode energy, and nonzonal
mode energy.
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(19)

The nonlinear evolution of zonal-mode energy is shown in
Fig. 3. Note that the initial exponential growth is similar to
that of the damped eigenmode. The growth of zonal modes
under nonlinear coupling has been analyzed previously, al-
though frequently for limited spectral interactions (e.g., a
single zonal mode with two turbulent sideband modes), or
with implicit scale separation assumptions, and not account-
ing for the accompanying excitation of damped eigenmodes.
The early phase of zonal mode excitation is well approxi-
mated by weak turbulence approximations like those used in
deriving Eq. (19). However, weak turbulence theory breaks
down at saturation. Further description of the turbulence
must not only utilize strong turbulence theory, but must ac-
count for the finite amplitude of the damped eigenmode. This
matter will be taken up in the next section. Damped eigen-
modes, specifically the geodesic acoustic mode, have been
observed in the context of zonal flows.’

lll. SATURATION ANALYSIS

In systems like TEM that develop a nonlinear eigen-
mode, an analytic description of the eigenmode in the satu-
rated state can be obtained by solving the equations for the
eigenmode decomposition. If the turbulence is stationary this
generally entails finding stationary eigenmode energies. The
physics of zonal modes can be investigated by examining
important spectral properties for the zonal-mode wave num-
ber k,=0, and comparing to nonzonal modes. Properties of

Downloaded 13 Feb 2006 to 128.104.165.60. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



022306-6 Gatto, Terry, and Baver

interest include energy transfer, dissipation, and energy lev-
els, and are explored in the next two sections.

Saturation in the eigenmode decomposition entails the
balance of linear instability or damping with nonlinear trans-
fer terms. This same approach, of course, is invariably ap-
plied to models of basic field evolution (i.e., density, poten-
tial, etc.). However its application to basic fields is not valid
if a nonlinear eigenmode develops. The drives and damping
of different eigenmodes are mixed in proportions that depend
on fluctuation level and cannot be determined from any bal-
ance within the basic-field representation. Direct balances of
linear drive and nonlinearity are intrinsically valid in the
eigenmode decomposition. However the nonlinearities are
mixed, and the energy path from source to sink is not con-
fined within a single eigenmode. In TEM turbulence, energy
goes from the instability (Im ;) to |8, then to Im(S,5,),
and finally to Re(8,,) and |B,|>. The damping of the last
three quantities by Im w, is the sink that saturates the turbu-
lence. Because the eigenmodes are nonorthogonal, the total
energy is a combination of |8 |B,]% Im(B;B,), and
Re(ﬂ}k,&). Consequently the dissipation of total energy, both

s

1 Cy(kk)
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negative (instability drive) and positive (damping), is not
given by any single eigenmode growth rate, but by an
amplitude-dependent combination. Solution of the eigen-
mode decomposition equations allows calculation of the en-
ergy dissipation rate. This is detailed in the next section.
The evolution equations for the energies |B3;|% |53,
Im(B,3,), and Re(f|3,) are written out in Ref. 1 as Egs.
(32)—(34). Equation (34) is complex, with independent real
and imaginary parts, hence there are four equations that de-
termine the four energies. We do not rewrite the four evolu-
tion equations here because of their length. However, they
are the basis for analysis of saturation. The original satura-
tion analysis of Ref. 1 considered balances involving non-
zonal modes only, i.e., it treated saturation and spectral trans-
fer as essentially isotropic. It also assumed long wavelengths
(k*< 1), but did not formally order k> under the expansion
for v/vpk,<1. The object of this section is to account for the
anisotropy of spectral transfer and document its effect on
energy levels and spectra. The ordering adopted for k<1 is
k*=0(v/vpk,)?. To illustrate our analysis of anisotropy, we
consider Eq. (32) of Ref. 1 in detail. This equation is

2

) bl

J
a_t|ﬂl|2=2 Im | B[* +Re >, {
k/

. . .ok *
2(iw] +iw] —iw; —Aw| — Aw| - Aw,)

[C1(K" k) | BIP81 > + C1 (K", K| B By + C (K K)

X|BIPIBIP + Colk = k") BI|X BB ) + Colk' k)| BIX(B1 By + Co(k". k)| BB By + Co(K" = k)| B X B BY )

+ Gk, kBB BYY + Colk, kMBI X BB +

CZ(k’k’)

.o .o .ok ’ U *
(iwg+io| —iw, — Aw) - Ao| - Aw,)

[C(k", 0| BB, By

- C, (k" 0)|BIPIBI* + CLlk kBB By + Cok" KBy BBy Ba) + Co(k",— k)| By B[ = oK' k)

X|BIPKB1B) = Calk’ .= KB B B> + Colle, k)| BIPI B> + C ke k") (B By KBS *ﬁ@]}, (20)

where
N R(k") = R, (K")
Gk == (K Xz k)T i (21)
N — _ (1! . M
Calkok) == (&' X 2 K) s, (22)

are coupling strengths, and we use the shorthand notation
Bi=BK). Bi=Bk). Bi=Bk—k). w=w(k), o'=w(k'),
and w”"=w(k—k’). The frequencies Aw, and Aw, are com-
plex amplitude-dependent eddy damping rates, given in Egs.
(35) and (36) of Ref. 1. The |3,|* evolution equation written
in this article as Eq. (20) and the three other coupled energy
evolution equations are too complicated to permit a general
analytic solution. However it is possible to determine how
the solution scales with the instability parameters v and v pk,.
The scalings can be found using asymptotic analysis for
v/v Dky<1 under the ansatz that both the instability drive,
Im w;, and the stable eigenmode damping, Im w,, remain in

dominant balances. From Fig. 1, it is evident that this ansatz
is operative in numerical solutions, particularly the require-
ment that Im w, enter the dominant balance.

To document the effects of anisotropy we find the solu-
tion of the anisotropic energy evolution equations and com-
pare it with the previous solution that assumed isotropy. The
asymptotic analysis requires the expansion of C;, C,, and the
turbulent three-wave decorrelation rates iW,,,=io; +iw,,
—in—ijf—Aw;—AwZ for v/vpk,<1. The isotropic solu-
tion was found using expansions of C;, C,, and W, that
assumed k, kj, k,—k; #0. It emerged from an asymptoti-
cally consistent balance with the leading order energy scal-
ings as

272

v k:,
|,31|2 ~A ?
k4

k)
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VZ
|Bof* ~ 45—,
k
(23)
. 12
Re(B,8,) ~A,—

(B B,) ~ A; —Dkl
k4

where the energies are spectrum averaged, k, is a mean po-

loidal wave number, and k* is a mean fourth power of wave
number generated from spectrum averages of (k' X z-k)2. In
the leading order balance of Eq. (20), the only nonlinear
terms  that enter are those  proportional  to
Calk, k") Cy (k' k)| BYXB1 Ba) and Cylk. k") Cy(K'
—k")|B1[X B} B5). Both of these terms involve coupling be-
tween a wave at &’ on the damped branch and waves at k and
k" on the unstable branch. This indicates that transfer to the
damped branch through the cross correlation Im(ﬁ?,&) plays
a prominent role in saturation. The Kolmogorov-like satura-
tion channel that involves transfer to higher-k Fourier modes
within the growing eigenmode branch is subdominant. (This
involves the isotropic part of terms in the |3,|* equation that
depend only on C; and B,.)

Anisotropy arises because w;~k,vp is large and finite
for k,# 0, whereas ;=0 for k,=0. This in turn affects C,
and C, through Eq. (15), and iW),,,. Because the wave num-
bers k, k', and k—k' appear in different combinations as the
arguments of C; and C, in Eq. (20), anisotropic transfer is
tracked by considering the limits k,— 0 and ky’ — 0. The limit
k),—ky’, — 0 reproduces terms already generated by ky’, —0 and
need not be tracked for scaling analysis. There are two types
of anisotropic interactions. One is the interaction of zonal
modes with k,=0 and nonzonal modes with k;, #0. (The non-
linear coupling vanishes for a zonal modes directly interact-
ing with another zonal mode.) The other is the interaction of
nonzonal modes with k, # 0 and zonal modes with k;=0. For
scaling analysis that does not resolve the full spectral varia-
tion there are now eight quantities to be found from the
asymptotic balances. These are |S3,[% 2, Re(ﬂﬁi), and
Im{,8,) for k,=0 and the same quantities for k,# 0. Like-
wise, there are eight balance equations obtained by taking
k,=0 and k, # 0 in Eqs. (32)—(34) of Ref. 1. Table I summa-
rizes the asymptotlc scalings of Cy, C,, and iW;,, in the

small parameter =v/v Dky for k, and ky values correspond-
ing to zonal and nonzonal modes.

Using the leading order scalings indicated in Table I,
there is a consistent leading order balance in all eight energy
evolution equations if the energies at nonzonal wave num-
bers have the same scalings as the isotropic analysis [ Eq.
(23)], and the zonal energies have the scalings

vpk:
|ﬁl(kx’ky:0)|2~AlZ 2 B
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TABLE I. Leading order scalings of the coupling strengths and decorrela-
tion rates appearing in the energy evolution equations, where 6=v/v DI;‘,.

ky, k) #0 k,=0 k=0
C,(k,k") O(&)+i0(8) i0(8)+0(&) i0(8)+0(&)
C, (k" k) O(H)+i0(8) i0(8)+0(&) i0(8)+0(&)
C, (k' k) O(®)+i0(8) i0(8)+0(&) i0(8)+0(&)
Cy(k, k") 0(1)+i0(5) i0(8)+0(1) i0(8)+0(&)
Cy(k, k") 0(1)+i0(5) i0(8)+0(1) 0(1)+i0(5)
C,(k' k) 0(1)+i0(5) i0(8)+0(&) i0(8)+0(1)
C,(k" k) 0(1)+i0(d) i0(8)+0(&) 0(1)+i0(5)
Gk =K'y O(1)+i0() 0(1)+i0(d) i0(8)+0(1)
Gk ,~k')  O(1)+i0(d) 0(1)+i0(d) i0(8)+0(&)
iWin HO(1)+i0(8)] H0(1)+i0(8)] H0(1)+i0(8)]
Wai ik [0()+i0(8)] ivpk[O(1)+i0(8)]  NO)+i0()]

Wiz ivpk[o()+i0®)]  AOM+OW@] ik [0(1)+i0(8)]

Waz  ivpk [0(1)+i0(8)]  ivpk,[O(1)+i0(d)] ivpk,[O(1)+i0(S)]

22
k
|Balk k= 0)* ~ Ay —ll_) ,
k4
(24)

272

£ U k
Re( B (ks ky = 0) Bk ey = 0)) ~ A,z%l,

& 149 ];V
Im<Bl (kx’ky = O)BZ(kmky = O)> -~ AiZ?Z‘

With these scalings the dominant balances are markedly dif-
ferent when anisotropy is accounted for versus when isot-
ropy is assumed. Whereas only two of the eighteen nonlinear
terms entered the dominant balance of the isotropic analysis,
all eighteen terms enter the dominant balance of Eq. (20)
with k/V #0 but k}’,=0 allowed in the spectrum sums. Conse-
quently, accounting for the coupling to zonal modes results
in nearly a factor of 10 increase in the saturation channels
available to absorb the energy injected into the turbulence by
the instability. This increase in saturation channels is consis-
tent with Fig. 1, which showed that most of the energy pro-
vided by the instability flows to the zonal modes.

The spectral transfer described above occurs in a 3D
space having k, and k, as two dimensions, and the third as
the two discrete states of eigenmode space. This 3D space is
visualized as two parallel k.-k, planes, one for each eigen-
mode. Spectral transfer terms in Eq. (20) fall into four cat-
egories. The first is isotropic flow to large wave number oc-
curring in the k,-k, plane of the unstable eigenmode, and is
governed by the first three terms of Eq. (20) with k,, & #0.
These same three terms with k;=0 describe anisotropic flow
within the plane of the unstable eigenmode from unstable
Fourier modes to zonal modes, and comprise the second cat-
egory. The third category consists of terms like
Cy(k, k") Co(k' k)| B]|XB,B>) that transfer energy isotropi-
cally in wave number space but jump from the unstable
eigenmode plane to the stable eigenmode plane. The fourth
category consists of terms like C,(k,k")C,(k",k)|B]|%B,8>)
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with k;:O. These also jump planes, but the transfer in k
space is anisotropic to ky’=0. Of these four categories, only
the first can be labeled Kolmogorov-like. The third and
fourth involve the stable eigenmode. The second represents
inverse transfer in a nonlinearity historically identified with
forward transfer. The ratio of the three Kolmogorov-like
terms to any rate in the other three categories is obtained by
substituting Egs. (23) and (24) into the terms in question. In

all cases the ratio is v?/ UZDI;}?, and is truly small. Moreover,
there are 3 terms in the second category, 2 in the third cat-
egory, and 15 in the fourth category, all of the same order.
This quantifies the assertion that the instability saturates by
non-Kolmogorov-like transfer, and that transfer is over-
whelmingly anisotropic and primarily to modes on the stable
branch. Non-Kolmogorov-like saturation via spectral transfer
to longer toroidal wavelengths has been observed in simula-
tion of electron temperature gradient turbulence.'® Because
eigenmode space was not resolved, it is not clear if this trans-
fer involves a single eigenmode or multiple branches.

The change in scaling of |3,> and (8,,) in the aniso-
tropic analysis relative to the isotropic analysis is also note-
worthy. It suggests that the zonal modes in these quantities
have larger levels than the nonzonal modes and that there is
therefore significantly more damping in the system than if
the coupling to zonal modes is removed. In the next section
we show that the nonlinear eigenmode created by the exci-
tation of the both the unstable and damped eigenmodes is
robustly damped for zonal wave numbers. The zonal modes
are therefore an energy sink. Because transfer to zonal modes
dominates the Kolmogorov transfer to damped modes at
higher wave number this is the saturation mechanism for the
instability. Consequently, there is a change in the saturation
level of nonzonal modes that follows from the inclusion or
exclusion of the anisotropic saturation channels to zonal
modes. This change is illustrated in Fig. 4. The fluctuation
level increases by an order of magnitude when the coupling
to zonal modes is removed. It must therefore be concluded
that in this system it is the nonlinear damping of zonal modes
that leads to the lower saturation level when zonal modes are
present. Although results like these have been exhibited since
zonal flows were first examined in unstable fusion plasmas,
we emphasize that, in light of the previous discussion, the
interpretation of these results is quite different from the one
usually given. Here zonal modes reduce saturation because
they are the dominant sink of fluctuation energy through a
finite amplitude-induced damping mechanism. In contrast,
the commonly invoked mechanism of zonal flow shearing19
derives from differential advection and is not intrinsically
dissipative.

The differences between this and other models are also
illustrated by the scaling of saturation level with zonal flow
damping. In simulations of ion temperature gradient turbu-
lence the saturation level increases with zonal-flow damping
rate. Here, |3,]>~ 12, but |B;|>~1°. Although the damped-
eigenmode level increases with larger zonal flow damping
(which is proportional to »), the level of the unstable eigen-
mode does not. However, in this model, unlike others, a
single dissipative parameter v controls both the instability

Phys. Plasmas 13, 022306 (2006)

free energy (growth rate) and the energy sink that saturates
the instability. Moreover the sink is only accessed as a finite-
amplitude effect through excitation of the damped eigen-
mode. Recent work shows that damped eigenmodes affect
saturation under certain conditions governed by the linear
and nonlinear coupling, conditions that may not be met in all
models.” These differences are implicated in cases where
there is little change in fluctuation level when the coupling to
zonal flows is removed,21 because in those cases there is
little deviation from the state of the linear instability.

Zonal mode spectra can be derived for 8, and 8, using
the procedure validated in Ref. 11 for finding the spectrum of
zonal flows in quasigeostrophic SB-plane turbulence. This
procedure is rooted in the observation made in Sec. II that
spectra develop singular boundary layer-like structure in
wave number space (consisting of enhanced spectral densi-
ties) to compensate for the vanishing of the wave frequency
when the wave number in the zonal direction is zero. In the
analysis of Ref. 11 the spectrum is inertial. In the present
system there is dissipation, however, in a sense to be ex-
plained more fully below, the deviation from inertial behav-

ior is weak because v<< lezy. The procedure of Ref. 11, al-
though heuristic, has been shown from simulation to
correctly predict the zonal-flow spectrum. In accordance with
the notion of a singular boundary layer in wave number
space it balances magnitudes of the wave term and the non-
linearity, equating all wave numbers to the wave number
whose direction is normal to the zonal direction.

For TEM the procedure must be interpreted as applying
to the evolution equations for B,(k) with k'’ Xz-k—k k!

yrxe
ky,—0, and all remaining wave number dependence evalu-
ated as k,. To remove the effect of instability we set a=1.
The spectrum is obtained from the evolution equation for 3,
because that is the equation in which the wave term appears.

Following the steps just described,
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FIG. 4. Total turbulent energy for numerical solution with and without cou-
pling to zonal modes.
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Kk,
w,(k)B, (kx)|ky=0 = m[&(h)ﬁ(h)

+ Ry (k) Bo(k,) 1B, (kx)|k),=0' (25)

Because both 8, and 3, remain in dominant balances, each
term on the right hand side of Eq. (25) must balance the
wave term, providing spectra for |3,|?> and |3,/>. The balance
with the first term yields 3,(k,)=vp/ €"’k,. Defining the con-
tinuous energy density for B; in the usual way as
JU,(k)dk,=|B;|?, the spectrum is given by

2

Up
Uy(k,) = 6—]%3( (26)

The balance with the second term yields B,(k,)=v/(1
—€'?)k2, from which the spectrum of S, is found to be

V2

Us(k,) = (1- €)%

(27)
These spectra are steep, particularly the 3, spectrum, which
happens to have the same power law exponent of the quasi-
geostrophic SB-plane spectrum. However, aside from that,
what is most telling about these spectra is their relationship
to the asymptotic scaling solutions, Egs. (23) and (24), and
the conclusions that can be drawn therefrom.

We note first that the singular layer spectra of Egs. (26)
and (27) have identical scaling with the nonzonal mode spec-
Bil>~vp/k* and |By|?
~1?/k*. We now take Eq. (27) as the zonal-mode spectrum
that matches to a nonzonal-mode spectrum for 3, outside the
singular layer, and we use it to determine the scaling of the
zonal-mode energy in 3, when the wave number dependence
is not resolved. To do this we replace k> with its dimensional
equivalent in the system parameters, ki: 2/ 1)123. We find that

tra of the asymptotic analysis, i.e.,

the zonal mode energy for B, becomes vf)/ k2, exactly as
indicated by Eq. (24). This means that the wave number
spectra of the singular layer analysis, when averaged over
wave number, reproduce the asymptotic scalings extracted
from the energy evolution equations. The two approaches are
equivalent even though one assumed an inertial range and
the other accounted fully for the noninertial distribution of
energy sources and sinks. This demonstrates that TEM, al-
though not inertial, is indeed governed by the inertial forces
of classic wave-dominated regimes in turbulence, consistent
with v<<v Dl;,,.

Consequ.ently, it is wave physics and the symmetry
breaking by anisotropic waves that sets the properties of
zonal flows and the spectrum of long wavelength turbulence
in TEM. This view connects to fundamental symmetries of
the governing equations and unifies the zonal mode physics
in TEM with that of other systems. It leads to the placement
of TEM turbulence in a dynamical similarity group with
quasigeostrophic B-plane turbulence, 3D rotating turbulence,
rotating stratified turbulence, and magnetohydrodynamic
(MHD).

Figure 3 shows the time evolution of the energies in
zonal and nonzonal wave numbers. Initially there is more
energy in nonzonal wave numbers, but eventually the energy

Phys. Plasmas 13, 022306 (2006)

in zonal wave numbers becomes larger. This is consistent
with development of the steep spectra of Egs. (26) and (27)
in a region where otherwise the energy tends to roll over and
decrease with decreasing wave number. Note that as the
zonal mode energy builds up the total energy also adjusts
downward from an initially higher, transient saturation level.
This is a common feature of zonal mode dynamics, but we
emphasize again that here it is caused by the strengthening of
a dissipative sink as zonal-mode energy builds.

IV. NONLINEAR ZONAL MODE DAMPING

The previous sections showed that the TEM system, like
other wave-dominated systems with anisotropic frequencies,
has strongly anisotropic spectral transfer to zonal modes. At
the same time the nonlinearity excites a damped eigenmode
that introduces finite-amplitude-induced damping for zonal
and nonzonal wave numbers. Here we quantify that damping
by specifying the precise mixing of unstable and stable
eigenmodes obtained from the saturation analysis of the pre-
vious section, and the damping and growth rates intrinsic to
these eigenmodes at wave numbers of interest. The basis for
calculation of finite-amplitude-induced dissipation is the
fluctuation energy, and its time rate of change, which quan-
tifies dissipation rates. The fluctuation energy is a quadratic
function of n; and ¢, formulated to include kinetic, potential,
and internal energies, and subject to the constraint that the
energy is an invariant of the nonlinearities.” The latter re-
quires the nonlinearities to vanish when the appropriate mo-
ments of Egs. (3) and (4) are taken to formulate the energy
evolution. The above requirements are satisfied when the en-
ergy is defined as

W= E(k) =2 [(1+K = )|+ € ni*]. (28)
k k

Although energy is conserved by the nonlinearities, it is dis-
sipated in the full system, which has dissipative linear terms.
The temporal derivative of W yields the net energy into (or
out of) the system under the combination of sources and
sinks, including the gradient free energy released into un-
stable wave numbers, and the energy dissipated at stable
wave numbers through trapped-electron pitch angle scatter-
ing. Taking the derivative of W, and using Egs. (3) and (4) to
express 71, and ¢ in terms of the remaining terms, dW/dt
can be written

aw
—— =2 2EW), (29)
dt 7
where ]:1 is the spectrally resolved energy growth rate, given
by

= kyvpée” Im(ng ) — ve'|(n, — )
N PV YL

(30)

The right-hand side of Eq. (29) comes entirely from the lin-
ear terms of Egs. (3) and (4). The nonlinear terms vanish in
the sum over k because W is an invariant. This does not make
'}/’kl a linear growth rate. It is nonlinear, or amplitude depen-
dent, because (1, ¢,) and |(n;— ¢,)|> have different values at
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finite amplitude than they have at infinitesimal amplitude
(where 9} is extremely close to the linear growth rate).

Consider the properties of the nonlinear growth rate. The
second term in the numerator arises from collisional detrap-
ping. It is negative or zero, depending on the values of n; and
¢y, but cannot be positive. Instability therefore resides in the
first term and occurs when it is positive and larger than the
second term. To be positive, k,# 0 and Im(n;;¢>k>>0. Note
that the first term is proportional to vp&, which parameter-
izes the free energy residing in the density and temperature
gradients. Consequently, the gradient free energy is only
available to modes with k,#0, and only if Im(n;¢k)>0.
Zonal modes have k,=0. They are unable to access the free
energy, and cannot be unstable, linearly or nonlinearly. If we
set k,=0 in Eq. (30) we obtain the zonal-mode energy
growth rate,

V61/2|(”k - ¢k)|2

(k=) + €2lmf | o

')/1k1|ky=0 =- (31)

which from the previous discussion is negative or zero. Thus
although zonal modes have no way of extracting free energy
from driving gradients, they are actually damped except
when n;= ¢.

We turn now to the relationship between n; and ¢,
which governs the zonal mode damping. This relationship is
dictated by the eigenmodes, and knowing it allows us to
evaluate zonal mode damping. The linear eigenmodes are
specified by Eq. (6). Selecting the zonal wave number con-
dition ky=0, and recalling that w;=0 for ky=0, we find that
for the unstable eigenmode R, =1, or that n,= ¢, (which im-
plies that n,=0). Consequently, the zonal wave number of
the unstable eigenmode is marginally stable, the standard
expectation. This is consistent with w;=0. Note that any de-
viation of the fluctuations from the unstable eigenmode,
however slight, introduces nonlinear damping. The unstable
eigenmode dominates evolution early in the linear growth
phase, making zonal modes undamped initially. However, as
the nonlinear eigenmode develops under the excitation of the
damped eigenmode, n,# ¢, and zonal modes become
damped.

We evaluate the nonlinear zonal mode damping rate at
saturation, substituting into Eq. (31) the values of n; and ¢,
consistent with the nonlinear mixing of unstable and damped
eigenmodes, as specified in the saturation levels given in
Egs. (24). From the eigenmode decomposition [ Eq. (5)], the
nonlinear growth rate can be written

Yl -o=—2ve"?| Bl (Ry = 1) [(1 + k2 - €)(| B
+]B,* + 2 Re( B 85) + €2(|B, > + B3| B

+2R, Re(ﬁlﬂ;>)]_l|ky=o, (32)
where
—(1+k-€")
R2|ky=0 =T n (33)

€

is found by substituting Eq. (14) into Eq. (6). The factor |3,|?
in Eq. (32) underscores the fact that it represents a nonlinear
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damping rate, because as a damped eigenmode, 3, only dif-
fers from infinitesimal values if it is excited to finite ampli-
tude by the nonlinearity. For concreteness, let us arbitrarily
set to unity the order-unity constants A, A,z A,z and A;;.
Substituting from Eq. (24), the zonal mode nonlinear damp-
ing rate becomes

14

Tradi_c " 59

7/'1<Z|ky=o ==
where the last approximate equality neglects €'/> as a small
parameter and is therefore consistent with the saturation lev-
els given in Eq. (24). We note that the nonlinear zonal mode
damping rate is of the same order as the growth rate of the
fastest growing mode (and of larger magnitude in this ap-
proximation). This is consistent with earlier demonstrations
that the instability is saturated by the finite-amplitude-
induced damping of zonal modes.

V. CONCLUSIONS

We have undertaken a fully self-consistent spectral study
of a system with strong nonadiabatic electron dynamics, and
with instability-driven turbulence possessing a prominent
zonal-mode component. The system models trapped electron
mode turbulence, an important component of the fluctuation
spectrum in tokamak discharges. The nonadiabatic electron
density is strongly excited at zonal wave numbers, hence the
investigation has gone beyond zonal flows to describe the
effects of zonal modes in other fluctuation fields. We have
explored key features shared with other types of turbulence
exhibiting large scale anisotropic structure, including 3D ro-
tating turbulence, rotating stratified turbulence, quasigeo-
strophic B-plane turbulence, and MHD turbulence.

Zonal modes are a fluctuation component whose spectral
density is singularly influenced by the frequency of linear
waves. We have shown that spectral transfer is governed by a
singular balance in wave number space between the nonlin-
earity and the wave frequency. Consequently, zonal modes
are the nonlinear vestige of the zero-frequency drift wave,
preferentially driven by spectral transfer as a consequence of
the vanishing of the linear wave frequency at the zonal mode
number k,=0. As such zonal modes are an anisotropic spec-
trum component expressing the anisotropy of drift wave
propagation. The singular balance is enforced in the fluctua-
tion basis that diagonalizes the linear coupling (the eigen-
mode decomposition).

Because zonal modes are produced by the interplay of
linear wave dynamics and nonlinearity, their analysis must
account for the possible nonlinear mixing of eigenmodes of
the wave dielectric. In TEM turbulence the unstable trapped
electron eigenmode is mixed with a second branch whose
modes are stable for all wave numbers. Mixing occurs be-
cause the stable eigenmode is nonlinearly excited to finite
amplitude by the advection of electron density. This nonlin-
ear mixing subjects zonal modes to the robust damping of
the stable eigenmode branch. The damping is nonlinear, or
finite-amplitude-induced, because it derives from the nonlin-
ear mixing.
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Nonlinear damping of zonal modes has two primary con-
sequences. First, it saturates zonal mode excitation, balanc-
ing the energy delivered to zonal modes by conservative
nonlinear spectral transfer. Second, it is the primary satura-
tion mechanism for the TEM instability when viscous dissi-
pation and collisional density diffusion are smaller than the
trapped electron scattering rate. This latter condition, along
with the weakly collisional constraint v<<vpk,, makes for
large Reynolds numbers. However, it does not support con-
ventional  large-Reynolds-number  saturation via a
Kolmogorov-like process involving spectral transfer to vis-
cously damped, small-scale Fourier modes on the unstable
eigenmode branch.

This result is created by the confluence of two mecha-
nisms. First, the excitation of the stable eigenmode to finite
amplitude opens a potent energy sink that otherwise is not
available. Provided the damped eigenmode is excited, this
sink dominates the viscous and diffusive sinks, a result veri-
fied in simulations. Second, spectral energy transfer strongly
favors zonal modes over other modes, making the zonal
wave numbers of the damped eigenmode spectrum the domi-
nant energy sink. The predilection of spectral transfer for
zonal modes derives from the vanishing of the wave fre-
quency for k,=0. It is unusually transparent in the nonlinear
coupling coefficient of the eigenmode decomposition, which
to lowest order in collision strength goes as one over the
wave frequency. It is equally salient in simulations. Given
these properties, it is not surprising that removing zonal
mode coupling dramatically raises the saturation level. Simu-
lations show that the increase in saturation level is an order
of magnitude. This type of behavior has long been associated
with zonal mode excitation. Although it originates in finite-
amplitude-induced dissipation in the present system, this
mechanism has not been explored in other systems with
zonal modes. The excitation of the geodesic acoustic mode,
as observed in experiment,9 is consistent with finite-
amplitude-induced dissipation.

Analysis of this system leads to several other interesting
observations. Given the importance of electron density ad-
vection at large scale, the spectral transfer that drives zonal
mode excitation is partly governed by density fluctuations.
Consequently, in looking for bispectral signatures of zonal
mode excitation, bispectra with the electron density should
be measured. The importance of electron advection at large
scales also raises the question of how large scale zonal
modes are excited by a nonlinearity known to favor energy
transfer to small scales. Recent work shows that while ad-
vection of electron density under isotropic conditions indeed
produces transfer to small scales, the anisotropy of drift wave
propagation leads to inverse energy transfer in wave-
dominated turbulence, even though the nonlinearity is
isotropic.17 This process is driven by the same anisotropy
that strongly favors coupling to zonal modes, but does not
require a zonal mode spectrum component. Hence it plays an
important role in building up that component. The inverse
spectral transfer process requires excitation of the damped
eigenmode. The excitation of the damped eigenmode has in-
teresting consequences for transport. Zonal modes are not a
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direct player per se, because transport requires k, # 0. How-
ever, they influence transport through the fluctuation level. A
description of particle transport in the TEM system is given
elsewhere.

The excitation of zonal modes represents a complex in-
teraction between linear and nonlinear processes. Zonal
modes are excited by the spectral transfer of an isotropic
nonlinearity, yet they are a prominent anisotropy of the fluc-
tuation spectrum. If zonal modes were governed solely by
the nonlinearity, they would be less probable than isotropic
modes (because they are confined to a limited volume in
wave number space), and not in evidence in visualizations of
the turbulence, except as a sporadically appearing fluctua-
tion. However, the anisotropy is rooted in the linear wave
terms, dominating the spectrum in the wave-dominated re-
gime where linear terms exceed the nonlinearity. Looking at
anisotropic structure as the consequence of a fundamental
anisotropy in the linear terms of governing equations raises
interesting questions with respect to other types of aniso-
tropy. Consider, for example, the radial streamer, for which
k,=0. This anisotropy resides in the linear growth rate. At
saturation the growth rate must be matched by the nonlinear-
ity, and therefore does not represent a situation in which a
linear term exceeds the nonlinearity. Is it possible, then, for
the streamer to be a prominent part of the spectrum? If not,
can the relatively small volume streamers occupy in wave
number space allow them to have anything other than a mi-
nor impact on transport?
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